Authors


Yao Hongbing

Latest:

Investigating a Laser-Induced Titanium Plasma Under an Applied Static Electric Field

We investigate the effect of an applied electric field on the laser-induced titanium plasma for laser induced breakdown spectroscopy (LIBS) for the purpose of assessing electron density with respect to laser energy.


Bin Yang

Latest:

Terahertz Spectral Investigation of L-Cysteine Hydrochloride and its Monohydrate

This new terahertz method provides a theoretical reference for studying the relationship between biomolecules and water.


Liping Li

Latest:

Spectroscopic Analysis of the Effects of Alkaline Extractants on Humic Acids Isolated from Herbaceous Peat

To study the effect of various extractants on the structure of peat humic acid, peat humic acid was extracted using NH3·H2O, Na2CO3, NaHCO3, and Na2SO3 via alkali-extraction and acid-precipitation methods.


Kaylee D. Hakkel

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).


Ying Yao

Latest:

A Novel High Selectivity Fluorimetric and Colorimetric Probe Based on Rhodamine B Hydrazide Derivatives for Detecting Hg2+ in Aqueous Media

A simple colorimetric and fluorescent dual-channel chemosensor was designed and synthesized to identify Hg2+ in an aqueous solution with demonstrated high selectivity and sensitivity.


Steven Ray

Latest:

Solution-Based Glow Discharges for Atomic Emission Spectroscopy Come of Age

The SCGD ambient-atmosphere microplasma has emerged as an alternate excitation source for atomic emission spectroscopy that is able to perform admirably compared to established, conventional approaches—with lower cost.


Sifan Guo

Latest:

The Enhancement Effects of Forsythoside E on Serum Albumin Fluorescence Under Simulated Physiological Conditions

This study examines the fluorescence enhancement effects of forsythoside E, one of metabolites of Forsythia suspensa, on human serum albumin (HSA) and bovine serum albumin (BSA) under simulated physiological conditions.



Yue Yang

Latest:

Density Functional Theory Investigation on the Molecular Structure and Vibrational Spectra of Triclosan

Selecting the correct basis set is essential for enhancing accuracy of DFT simulations. Here, the effects of five basis sets on the theoretical frequencies and calculated infrared intensities are compared to predict the molecular structural and vibrational properties of the triclosan. The demonstrated methods can help provide a benchmark for studying the pollution mechanisms and ecological effects of antibacterial products like triclosan.


Ruiguang Zhao

Latest:

Simulation of an Algorithm for Space Target Materials Identification Based on vis-NIR Hyperspectral Data

A model based on similarity regularized nonnegative matrix factorization (SRNMF) can be used in space exploration and national security applications to exploit the spatial information in an image of a space target.


Lin Cao

Latest:

Exploring the Potential of the Yb(III) (HE)4 Complex for Oncotherapy Using UV-vis Spectroscopy

Evaluation of the UV-vis spectra of the reaction product of ytterbium (III) with hematoxylin (HE) indicates the formation of a rare earth complex that further reacts with marine mammal DNA, indicating the potential that this complex may have anti-tumor properties.



Ying-Jie Zeng

Latest:

Multichannel Raman Spectral Reconstruction and Fast Imaging Based on Global Weighted Linear Regression

Raman spectroscopy is a powerful, label-free spectral imaging technique for biomedical sample measurements. The chemometric approaches described here increase the speed of data acquisition and improve the resolution of Raman images.


Guanglu Ge

Latest:

Inductively Coupled Plasma–Mass Spectrometry (ICP-MS) Analysis of Nanomaterials for Use in Nuclear and Material Applications

Tunable diode laser absorption spectroscopy (TDLAS) is combined with an extreme learning machine (ELM) model, tailored by genetic algorithm (GA) parameter searching, to produce a more robust analytical method for trace gas analysis of ethylene.


Jun Liu

Latest:

Enhanced Raman and Mid-Infrared Spectroscopic Discrimination of Geographical Origin of Rice by Data Mining and Data Fusion

The application of data mining combined with data fusion of Raman and mid- infrared spectra was studied to improve discrimination ability for modeling the geographical origins of rice.


Bharat R. Mankani

Latest:

Raman Spectroscopy: Bringing Inline Analysis to Production

New Raman spectroscopy applications are emerging in non-traditional fields because of advances in easy-to-use commercial Raman spectroscopy instrumentation. With improvements in lasers, optics, and detectors, Raman spectroscopy has developed into a powerful measurement solution for manufacturing and quality control applications.


Mark R. Zierden

Latest:

Applications of Micro X-Ray Fluorescence Spectroscopy in Food and Agricultural Products

In recent years, advances in X-ray optics and detectors have enabled the commercialization of laboratory μXRF spectrometers with spot sizes of ~3 to 30 μm that are suitable for routine imaging of element localization, which was previously only available with scanning electron microscopy (SEM-EDS). This new technique opens a variety of new μXRF applications in the food and agricultural sciences, which have the potential to provide researchers with valuable data that can enhance food safety, improve product consistency, and refine our understanding of the mechanisms of elemental uptake and homeostasis in agricultural crops. This month’s column takes a more detailed look at some of those application areas.


Petar Ševo

Latest:

Spectral Sensing Using a Handheld NIR Module Based on a Fully Integrated Sensor Chip

A novel approach to NIR spectral sensing, using a miniaturized fully-integrated multipixel array of resonant-cavity-enhanced InGaAs photodetectors, enables sensors with a millimeter-scale footprint and wafer-scale fabrication. This multipixel sensor does not measure the full spectrum, but rather a limited number of spectral regions with limited resolution (50–100 nm).


Sicen Dong

Latest:

Prediction of the Size-Dependent Raman Shift of Semiconductor Nanomaterials via Deep Learning

A deep learning model for predicting the size-dependent Raman shift of semiconductor nanomaterials was demonstrated and achieved via multi-layer perceptron.


Peyton Willis

Latest:

Using an Innovative Mass Spectrometer and Non-Matrix–Matched Reference Materials to Quantify Composition of Metal Disks and Powders

Laser ablation laser ionization time-of-flight mass spectrometry (LALI-TOF-MS) can quantify elemental constituents without the need for matrix-matching, making it attractive for metals testing, particularly for additive manufacturing.


Zhuzhi Zhang

Latest:

Exploring the Potential of the Yb(III) (HE)4 Complex for Oncotherapy Using UV-vis Spectroscopy

Evaluation of the UV-vis spectra of the reaction product of ytterbium (III) with hematoxylin (HE) indicates the formation of a rare earth complex that further reacts with marine mammal DNA, indicating the potential that this complex may have anti-tumor properties.


Haolin Li

Latest:

Optical Constants of Mixed Crude Oil in Visible Waveband Based on the Double-Thickness Transmittance Method

To study the optical properties of mixed crude oil, the optical constants of samples consisting of two crude oils mixed in different proportions were obtained by the double-thickness transmittance method based on transmittance spectra.


Wen Yuan

Latest:

A Novel Fluorescence Sensor Based on the Tetrakis (4-Carboxyphenyl) Porphyrin (TCPP)-Hg2+ System for Glutathione (GSH) Detection

Glutathione (GSH) is an intracellular thiol that plays a major role in biological systems. Therefore, the development of effective probes that can detect GSH elicits significant attention.


Fengzhu Liu

Latest:

Model for Retrieving Leaf Chlorophyll Using the Wavelet Analysis Algorithm with the Prospect Radiative Transfer Model and Vis-NIR Spectra

Spectral reflectance is a non-destructive method that is applicable to remote sensing and may be used to measure the chlorophyll content in a crop, which indicates the photosynthetic capacity, growth cycles, and degrees of stress (such as disease, insect infestation, and heavy metal stress) on plant ecosystems. This vis-NIR spectral reflectance method measures leaf chlorophyll using a wavelet analysis algorithm approach.


Zhaoxia Zhang

Latest:

Multiscale Convolutional Neural Network of Raman Spectra of Human Serum for Hepatitis B Disease Diagnosis

A multiscale convolutional neural network (MsCNN) was used to screen Raman spectra of the hepatitis B serum, achieving higher classification accuracy compared to traditional machine learning methods.


Moustafa Sayem El-Daher

Latest:

Effect of Tissue Optical Properties on the Fluorescence of BODIPY Derivative as a Photosensitizer for Photodynamic Therapy

Photodynamic therapy is widely used as an established biomedical optical modality for the conservative treatment of tumors. This work investigates laser-induced fluorescence spectroscopy of the emerging photodynamic photosensitizer BODIPY-520 in turbid media.


Bangxing Han

Latest:

Handheld Near-Infrared Spectrometers: Reality and Empty Promises

In celebration of Spectroscopy’s 35th Anniversary, leading experts discuss important issues and challenges in analytical spectroscopy.


Ehab F. Elkady

Latest:

Resolving Analytical Challenges in Pharmaceutical Process Monitoring Using Multivariate Analysis Methods: Applications in Process Understanding, Control, and Improvement

In this review, we show a wide range of examples of the expanding use of multivariate analysis (MVA) in pharmaceutical manufacturing and control. MVA is being used to resolve numerous analytical challenges, such as overcoming matrix effects, extracting reliable data from dynamic matrices, and more.



Bin Chen

Latest:

Stable Variable Selection Method and Comparison for Quantitative Analysis of Steels Using Laser-Induced Breakdown Spectroscopy

In this work, a stable variable selection method based on variable stability correction (VSC) and modified iterative predictor weighting-partial least squares (mIPW-PLS) is proposed for the quantitative analysis of steel samples by laser-induced breakdown spectroscopy (LIBS).