A novel intelligent inversion model integrating multiscale fractal analysis, PCA, and machine learning techniques (RF and SVM) was devised to accurately estimate soil organic matter (SOM) using hyperspectral data.
Determining the printing sequences of crossed writings and seal stamps is often difficult because the most common methods used are expensive, time-consuming, and cumbersome. A new method using Raman spectral area scanning offers a better alternative while conducting pigment analysis and determining intersection sequences of writings and seal stamps. We explain why.
Fungal infections and mycotoxin contamination in food products pose a major threat to the world population. Mycotoxins contaminate approximately 25% of the world’s food products and cause severe health problems through the utilization of affected food products. The major mycotoxins in different foods are aflatoxins, ochratoxins, fumonisins, zearalenone, trichothecenes, and deoxynivalenol. Today, various conventional and nondestructive techniques are available for the detection of mycotoxins across multiple food products. Conventional methods are time-consuming, require chemical reagents, and include many laborious steps. Therefore, nondestructive techniques like near-infrared (NIR) spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, hyperspectral imaging, and the electronic nose are a priority for online detection of fungal and mycotoxin problems in different food products. In this article, we discuss recent improvements and utilization of different nondestructive techniques for the early detection of fungal and mycotoxin infections in various food products.
In X-ray fluorescence (XRF) analysis, physical traceability chains are used to quantify the absolute elemental content in a sample. The physical traceability chain relies on absolute knowledge of the X-ray spectral distribution used for the excitation of the instrument and is currently used at synchrotron radiation facilities. Here, we discuss the transfer of the physical traceability chain to laboratory-based X-ray sources, which are often polychromatic, with the view to generate wider application of quantitative XRF analysis.
By using green synthesized AgNPs modified by chitosan and organic acid, a simple, cost-effective, and highly selective onsite colorimetric detection method for Pd2+ and Hg2+ ions was developed.
This study aimed to assess and detect adulteration of Kelulut honey with different percentages of rice syrup using near-infrared (NIR) spectroscopy.
Various chemometric approaches, including four discriminant models (ELM, TLBO–ELM, KELM, and TLBO–KELM), were used to detect shrimp freshness based on near-infrared hyperspectral imaging.
UV-Vis-NIR can be used to understand how ancient buildings were constructed. Here, a UV-Vis-NIR and EDXRF spectrophotometer were used to analyze glazed tiles that comprised a historical site built in Ancient China.
A complex fluorescence method utilizing the Sn(II)-salicylfluorescein (SAF)-cetyltrimethylammonium bromide (CTMAB) system demonstrated effective detection of Sn(II) with a linear relationship between its concentration and fluorescence intensity, along with successful application in various sample matrices with high recovery rates.
An increasing number of antibiotic residue problems in food have emerged around the world. We examine how SERS is used to identify antibiotic residues in chicken, focusing on doxycycline hydrochloride and tylosin.
Great interest has recently aroused in the study of the dysregulation of chemical elements within tissues. Information about the distribution of elements in biological tissues can contribute to a more complete medical diagnosis, and can guide therapeutic procedures for many pathologies.
A new study published in Talanta introduces SYSPECTRAL, a portable multi-spectroscopic system that can conduct non-invasive, in situ chemical analysis of cultural heritage materials by integrating LIBS, LIF, Raman, and reflectance spectroscopy into a single compact device.
The Bouguer-Beer-Lambert law has its limitations and it doesn't always properly reflect the physical phenomena at play. This article examines the law's limitations.
The accuracy of prediction models based on spectroscopic measurements can be influenced by a variety of factors, including aging equipment. Continuous monitoring is key to managing the PAT model lifecycle and ensuring that changes over time do not negatively affect prediction model performance.
Spectral reflectance is a non-destructive method that is applicable to remote sensing and may be used to measure the chlorophyll content in a crop, which indicates the photosynthetic capacity, growth cycles, and degrees of stress (such as disease, insect infestation, and heavy metal stress) on plant ecosystems. This vis-NIR spectral reflectance method measures leaf chlorophyll using a wavelet analysis algorithm approach.
Photodynamic therapy is widely used as an established biomedical optical modality for the conservative treatment of tumors. This work investigates laser-induced fluorescence spectroscopy of the emerging photodynamic photosensitizer BODIPY-520 in turbid media.
Surface-enhanced Raman spectroscopy (SERS), using gold nanoparticles, is useful for detection of low-levels of many analytes, including the water pollutant malachite green (MG).
Surface-enhanced Raman spectroscopy (SERS), using gold nanoparticles, is useful for detection of low-levels of many analytes, including the water pollutant malachite green (MG).
In this article, it is explored whether THz-TDS combined with LS-SVM can be used to effectively identify the authenticity of Panax notoginseng, a traditional Chinese medicine.
Traditional qualitative analysis of agricultural materials using near-infrared spectroscopy can be improved using information-based classification methods, such as projection based on principal components and the Fisher criterion (PPF).
High-resolution measurements of particles are of great interest in many fields of application. With ParticleScout, WITec has developed a tool that makes it possible to find, classify, and identify particles automatically.
To ensure the stable operation of fuel plant desulfurization systems, it is critical to maintain the content of thiosulfate within an appropriate range. This new method for thiosulfate determination is highly sensitive and easy to perform.
By utilizing the Crystalline device coupled with a Tornado Raman spectrometer, it is possible to monitor and track polymorphism and morphology at low working volumes.
ICP-MS is increasingly being used to analyze complex matrices, but an ICP-MS instrument optimized for the highest sensitivity may not have the sufficient matrix tolerance to analyze high-salt samples. We describe a method to optimize plasma robustness and interference control for accurate, routine analysis of critical trace elements in undiluted seawater.
Food contamination from mineral oil saturated hydrocarbons (MOSHs) and mineral oil aromatic hydrocarbons (MOAHs) is problematic and requires a sensitive analytical technique. These contaminants were analyzed using GC×GC with flame ionization detection (FID) and time-of-flight–MS (TOF–MS) parallel dual detection. The method provides enhanced chromatographic separation, along with the full mass spectra information, and overcomes difficult interferences, resulting in reduction of false positives over conventional GC–MS methods.
A look at how the spectral properties single-phase green emission phosphor make it suitable for near-UV light-emitting diode (NUV-LED) applications.
A simple colorimetric and fluorescent dual-channel chemosensor was designed and synthesized to identify Hg2+ in an aqueous solution with demonstrated high selectivity and sensitivity.
In celebration of Spectroscopy’s 35th Anniversary, leading spectroscopists discuss important issues and challenges in analytical spectroscopy.
The use of high-resolution LIBS imaging requires the reduction of acquisition time. The authors describe a new developed system that accomplishes this goal and can be used in various applications where elemental composition and elemental distribution analysis is required.
In this study, we propose a low-altitude unmanned aerial vehicle (UAV) hyperspectral visible near-infrared (vis-NIR) remote sensing hardware platform, which combines efficiency and accuracy for high-precision remote sensing-based ecological surveys and statistical data collection on grassland desertification.