Authors


William Jones

Latest:

A Simple Analysis of 4-Methylimidazole Using Automated Solid-Phase Extraction and High Performance Liquid Chromatography with MS-MS and MS–SIM Detection

This work will demonstrate a simple methodology using automated solid-phase extraction (SPE) and HPLC coupled with mass spectrometric detection. This work will demonstrate a simple methodology using automated solid-phase extraction (SPE) and HPLC coupled with mass spectrometric detection. This work will demonstrate a simple methodology using automated solid-phase extraction (SPE) and HPLC coupled with mass spectrometric detection.


Lance Heinle

Latest:

Creating a High-Throughput LC–MS-MS System Using Common Components

How to create a liquid chromatography–tandem mass spectrometry (LC–MS-MS) system using mass spectrometers, a high performance liquid chromatography (HPLC) binary pump system, and an autosampler


Johanna Pitterle

Latest:

Applying LC with Low-Resolution MS/ MS and Subsequent Library Search for Reliable Compound Identification in Systematic Toxicological Analysis

Systematic toxicological analysis is an important step in medicolegal investigations of death, poisoning, and drug use. The primary goal is the detection and confirmation of potentially toxic compounds in evidence. This article describes a workflow using nontargeted liquid chromatography–tandem mass spectrometry (LC–MS/MS) for reliable compound identification.


Julia Steger

Latest:

Applying LC with Low-Resolution MS/ MS and Subsequent Library Search for Reliable Compound Identification in Systematic Toxicological Analysis

Systematic toxicological analysis is an important step in medicolegal investigations of death, poisoning, and drug use. The primary goal is the detection and confirmation of potentially toxic compounds in evidence. This article describes a workflow using nontargeted liquid chromatography–tandem mass spectrometry (LC–MS/MS) for reliable compound identification.


Kiana Jansen

Latest:

Shedding New Light on Forensic Timelines

The development of novel, nondestructive technologies for rapid analysis of evidence discovered at crime scenes is pertinent to our criminal justice system to solve the millions of violent crimes that occur each year. Without a witness, establishing the precise timeline of a crime is difficult. Therefore, technologies based on sensitive, nondestructive techniques are needed to evaluate evidence and create such a timeline. We propose the use of Raman spectroscopy to analyze the age of bloodstains for potential use as a forensics tool. Previous studies have revealed Raman spectroscopy is sensitive to changes in blood analyte concentration and different oxidative states of hemoglobin. Raman spectroscopy could allow for rapid comparison of spectra from blood stains of unknown age to spectra of known age with high temporal accuracy. Though further investigation into other substrates and biochemical components should be performed, our study reveals Raman spectroscopy has the potential to accurately and nondestructively determine the age of a bloodstain for use in criminal investigations.


Maggie O’Connor

Latest:

Shedding New Light on Forensic Timelines

The development of novel, nondestructive technologies for rapid analysis of evidence discovered at crime scenes is pertinent to our criminal justice system to solve the millions of violent crimes that occur each year. Without a witness, establishing the precise timeline of a crime is difficult. Therefore, technologies based on sensitive, nondestructive techniques are needed to evaluate evidence and create such a timeline. We propose the use of Raman spectroscopy to analyze the age of bloodstains for potential use as a forensics tool. Previous studies have revealed Raman spectroscopy is sensitive to changes in blood analyte concentration and different oxidative states of hemoglobin. Raman spectroscopy could allow for rapid comparison of spectra from blood stains of unknown age to spectra of known age with high temporal accuracy. Though further investigation into other substrates and biochemical components should be performed, our study reveals Raman spectroscopy has the potential to accurately and nondestructively determine the age of a bloodstain for use in criminal investigations.


Joseph Hodge

Latest:

Shedding New Light on Forensic Timelines

The development of novel, nondestructive technologies for rapid analysis of evidence discovered at crime scenes is pertinent to our criminal justice system to solve the millions of violent crimes that occur each year. Without a witness, establishing the precise timeline of a crime is difficult. Therefore, technologies based on sensitive, nondestructive techniques are needed to evaluate evidence and create such a timeline. We propose the use of Raman spectroscopy to analyze the age of bloodstains for potential use as a forensics tool. Previous studies have revealed Raman spectroscopy is sensitive to changes in blood analyte concentration and different oxidative states of hemoglobin. Raman spectroscopy could allow for rapid comparison of spectra from blood stains of unknown age to spectra of known age with high temporal accuracy. Though further investigation into other substrates and biochemical components should be performed, our study reveals Raman spectroscopy has the potential to accurately and nondestructively determine the age of a bloodstain for use in criminal investigations.


Christine O’Brien

Latest:

Shedding New Light on Forensic Timelines

The development of novel, nondestructive technologies for rapid analysis of evidence discovered at crime scenes is pertinent to our criminal justice system to solve the millions of violent crimes that occur each year. Without a witness, establishing the precise timeline of a crime is difficult. Therefore, technologies based on sensitive, nondestructive techniques are needed to evaluate evidence and create such a timeline. We propose the use of Raman spectroscopy to analyze the age of bloodstains for potential use as a forensics tool. Previous studies have revealed Raman spectroscopy is sensitive to changes in blood analyte concentration and different oxidative states of hemoglobin. Raman spectroscopy could allow for rapid comparison of spectra from blood stains of unknown age to spectra of known age with high temporal accuracy. Though further investigation into other substrates and biochemical components should be performed, our study reveals Raman spectroscopy has the potential to accurately and nondestructively determine the age of a bloodstain for use in criminal investigations.


Isaac Pence

Latest:

Shedding New Light on Forensic Timelines

The development of novel, nondestructive technologies for rapid analysis of evidence discovered at crime scenes is pertinent to our criminal justice system to solve the millions of violent crimes that occur each year. Without a witness, establishing the precise timeline of a crime is difficult. Therefore, technologies based on sensitive, nondestructive techniques are needed to evaluate evidence and create such a timeline. We propose the use of Raman spectroscopy to analyze the age of bloodstains for potential use as a forensics tool. Previous studies have revealed Raman spectroscopy is sensitive to changes in blood analyte concentration and different oxidative states of hemoglobin. Raman spectroscopy could allow for rapid comparison of spectra from blood stains of unknown age to spectra of known age with high temporal accuracy. Though further investigation into other substrates and biochemical components should be performed, our study reveals Raman spectroscopy has the potential to accurately and nondestructively determine the age of a bloodstain for use in criminal investigations.






Balaram Vysetti

Latest:

Current Advances in the Miniaturization of Analytical Instruments—Applications in Cosmochemistry, Geochemistry, Exploration, and Environmental Sciences

Miniaturization of analytical instruments of various forms of spectroscopy has improved dramatically in recent years mainly because of the requirements in certain areas such as space, industrial, and environmental research. Research into miniaturization is primarily driven by the need to reduce the instrumental space and costs by reducing the consumption of expensive reagents and by increasing throughput and automation. Like other fields, analytical systems have also been affected by novel ideas and unprecedented advances in the microelectronics leading to miniaturization of different components in recent years. This article presents an overview of the current developments in the miniaturization of analytical instruments for mainly detecting metals at extremely low concentration levels, with some important examples from areas such as space, mineral exploration, the environment, and pharmaceuticals, focusing primarily on advancements as well as the challenges that have impacted from some of the major international manufacturers.



Brian M. Hynek

Latest:

Field-Portable VNIR Spectrometry: Applications for Mars Rover Operational Strategies Testing at Terrestrial Analog Sites

Visible-near infrared (VNIR) spectroscopy provides a wealth of compositional information, and is a valuable tool in planetary exploration. The 2016 GeoHeuristic Operational Strategies Testing (GHOST) program is a terrestrial analog rover simulation designed to refine Mars Rover operational strategies. The GHOST program utilized a TerraSpec Halo handheld VNIR spectrometer to simulate the function of the Mars Science Laboratory (MSL) ChemCam and Mars 2020 rover SuperCam. Commercially available instrumentation is employed to eliminate engineering, communication, and mission-specific specifications, and allow the GHOST team to focus solely on investigative protocols. The portable spectrometer allowed for rapid data acquisition of in-situ outcrops, similar to those data gathered by Mars rovers, and allowed the instrument operator to rapidly traverse the field site, maximizing the number of data points gathered for the science teams.


Wade R. Thompson

Latest:

Analysis for Lead in Laundered Shop Towels Using Handheld X-ray Fluorescence Spectroscopy

Many automotive shops use a laundry service to clean their soiled shop towels. Previous studies have shown the towels can retain metals even after laundering and long-term exposure to certain metals such as lead could potentially result in health issues to employees using the towels. Laundered shop towels were collected from local automotive shops and analyzed to assess the ability of X-ray fluorescence (XRF) spectroscopy using a handheld system to measure harmful metal contaminants such as lead in the towels.


Kyle W. Scott

Latest:

Analysis for Lead in Laundered Shop Towels Using Handheld X-ray Fluorescence Spectroscopy

Many automotive shops use a laundry service to clean their soiled shop towels. Previous studies have shown the towels can retain metals even after laundering and long-term exposure to certain metals such as lead could potentially result in health issues to employees using the towels. Laundered shop towels were collected from local automotive shops and analyzed to assess the ability of X-ray fluorescence (XRF) spectroscopy using a handheld system to measure harmful metal contaminants such as lead in the towels.


Sarah R. Black

Latest:

Field-Portable VNIR Spectrometry: Applications for Mars Rover Operational Strategies Testing at Terrestrial Analog Sites

Visible-near infrared (VNIR) spectroscopy provides a wealth of compositional information, and is a valuable tool in planetary exploration. The 2016 GeoHeuristic Operational Strategies Testing (GHOST) program is a terrestrial analog rover simulation designed to refine Mars Rover operational strategies. The GHOST program utilized a TerraSpec Halo handheld VNIR spectrometer to simulate the function of the Mars Science Laboratory (MSL) ChemCam and Mars 2020 rover SuperCam. Commercially available instrumentation is employed to eliminate engineering, communication, and mission-specific specifications, and allow the GHOST team to focus solely on investigative protocols. The portable spectrometer allowed for rapid data acquisition of in-situ outcrops, similar to those data gathered by Mars rovers, and allowed the instrument operator to rapidly traverse the field site, maximizing the number of data points gathered for the science teams.


R. Aileen Yingst

Latest:

Field-Portable VNIR Spectrometry: Applications for Mars Rover Operational Strategies Testing at Terrestrial Analog Sites

Visible-near infrared (VNIR) spectroscopy provides a wealth of compositional information, and is a valuable tool in planetary exploration. The 2016 GeoHeuristic Operational Strategies Testing (GHOST) program is a terrestrial analog rover simulation designed to refine Mars Rover operational strategies. The GHOST program utilized a TerraSpec Halo handheld VNIR spectrometer to simulate the function of the Mars Science Laboratory (MSL) ChemCam and Mars 2020 rover SuperCam. Commercially available instrumentation is employed to eliminate engineering, communication, and mission-specific specifications, and allow the GHOST team to focus solely on investigative protocols. The portable spectrometer allowed for rapid data acquisition of in-situ outcrops, similar to those data gathered by Mars rovers, and allowed the instrument operator to rapidly traverse the field site, maximizing the number of data points gathered for the science teams.


Dr. Mustafa Kansiz

Latest:

Identifying Contaminants in Synthetic Polymers and Rubbers Using Micro Ge ATR FT-IR Imaging

Manufacturing downtime hurts your bottom line - and any downtime caused by unintentional contamination during materials processing is especially painful. With regular adherence to impurity standards and cleanliness specifications it can be significantly reduced.


Yvette Mattley, Ph.D

Latest:

Spectroscopy of Sports Drinks

In this application note, we demonstrate the power of the modular spectroscopy to measure the UV-Vis absorbance of natural and artificial colorants used in sports drinks.


Albert Tas

Latest:

Food Metabolomics: Fact or Fiction?

The different aspects of food metabolomics are described using tomato taste as an example.


Zihua Zhu

Latest:

Probing Aqueous Surfaces by TOF-SIMS

A breakthrough using a microfluidic interface to conduct sensitive time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis and study liquid surfaces in situ under vacuum conditions is described here.


Eleanor Riches

Latest:

Testing the Limits of Ion Mobility Mass Spectrometry to Compare a Nonbiological Complex Drug Product and Purported Generics—A Case Study with Copaxone

Ion mobility mass spectrometry (IMMS) is a two-dimensional technique that allows separation of ionized molecules based on molecular size, shape, and mass‑to‑charge ratio (m/z). It has rapidly become a valuable application for analyzing isomeric compounds in a complex matrix (e.g., proteomic and lipidomic samples) or complex mixtures of structurally related and isobaric analytes (e.g., oil samples or polymer blends). IMMS was investigated as a possible technique to compare purported generic products with Copaxone®, a drug for treating relapsing‑remitting multiple sclerosis, which contains a very complex mixture of synthetic peptides. The analysis was performed on 15 randomly chosen batches of Copaxone® and 5 batches of purported generics that are marketed drugs in their country of origin. All samples were compared to a reference batch of Copaxone® (P53961) using Waters HDMS Compare software. The analysis produced heat maps that highlighted significant intensity differences in peptides at various m/z and drift times. A quantitative assessment of these heat maps was also performed by summing all the pixel values to produce a total pixel value (TPV). While the average TPV for the Copaxone® batches was 510811, the TPVs of the purported generics were 8-13 fold higher (2301682 to 4276572).


Steve Lowry, PhD, Senior Applications Scientist

Latest:

Gas Analysis with the Nicolet iS50 FT-IR Spectrometer

Combining a high precision FT-IR spectrometer with a long pathlength gas cell provides a powerful tool for analyzing trace levels of contaminants in air and other gas mixtures.


Lillian A. Frink

Latest:

Using Headspace Gas Chromatography for the Measurement of Water in Sugar and Sugar-Free Sweeteners and Products

This fast, automated method was shown to be accurate and precise for 16 liquid sweeteners, and is likely more accurate than Karl Fischer titration.


José António Rodrigues

Latest:

Determination of _α-Dicarbonyls in Wines Using Salting-Out Assisted Liquid–Liquid Extraction

A new methodology for the analysis of three important -dicarbonyls (methylglyoxal, diacetyl, and pentane-2,3-dione) in wines was developed.


Dr. Jonathon Speed

Latest:

Vibration-Resistant FT-IR for In-Process Monitoring of an Industrial Fermentation Process

A vibration-resistant FT-IR spectrometer is used to monitor an industrially relevant fermentation process.


Inês Maria Valente

Latest:

Determination of _α-Dicarbonyls in Wines Using Salting-Out Assisted Liquid–Liquid Extraction

A new methodology for the analysis of three important -dicarbonyls (methylglyoxal, diacetyl, and pentane-2,3-dione) in wines was developed.