October 18th 2024
Top articles published this week include an article about hyperspectral imaging in human skin research, a peer-reviewed article about analyzing geological samples using atomic spectroscopy techniques, and an equipment roundup piece about the latest products in the industry.
Rapid Multielement Nanoparticle Analysis Using Single-Particle ICP-MS/MS
May 1st 2019Complex isobaric and polyatomic spectral interferences can be mitigated using triple quadrupole ICP-MS (ICP-MS/MS) with a collision–reaction cell (CRC). This configuration allows for the multielement characterization and detection of smaller nanoparticle sizes.
Not All Nanoparticle Analysis Challenges are Created Equal
September 10th 2018The detection, quantitation, and characterization of nanoparticles using inductively coupled plasma–mass spectrometry (ICP-MS), and in particular using single-particle ICP-MS (SP-ICP-MS), has developed significantly in recent years. However, the difficulties involved in this type of analysis vary, depending on the composition of the nanoparticles. Martín Resano of the University of Zaragoza, together with colleagues from Ghent University, has recently developed a method for characterizing nanoparticles made from silicon dioxide (Si02), which are much more challenging to detect than those made from silver or gold. He recently spoke to us about this work.
Meeting the USP and Guidelines with ICP-OES
September 1st 2018With its advantages-compared to ICP-MS-in matrix tolerance, robustness, simplicity, and cost, ICP-OES may be the technique of choice for the analysis of medications with low daily doses. For such analyses, the use of high-pressure, high-temperature microwave digestion in sealed containers simplifies sample preparation and prevents the loss of volatile elements.
ICP-MS Analysis of Noble Metals at Low Levels in Geological Reference Materials and Ores
September 1st 2018This study reveals the potential of triple-quadrupole ICP-MS for reliable quantification of noble metals at ultratrace levels even in difficult matrices.The effective use of reactive gases for interference removal and a thorough and effective protocol for sample preparation and handling are essential.
Using Double Mass Selection and Reaction Cell Gases to Resolve Isobaric Spectral Overlaps in ICP-MS
September 1st 2018When using a triple-quadrupole ICP-MS system, the increased abundance sensitivity of MS/MS mode makes it possible to measure trace elements using isotopes that would otherwise be affected by peak tailing from an adjacent major element. This approach is illustrated using the example of ultratrace 237Np analysis in the presence of 10 ppm U.
Investigating Nanoparticles in the Environment with SP-ICP-MS
September 8th 2017There is growing concern about the unknown effects that nanoparticles may have on the environment, especially in drinking water and plants. Single-particle inductively coupled plasma–mass spectrometry (SP-ICP-MS) is emerging as a useful technique for analyzing nanoparticles and their presence in environmental and biological systems. Honglan Shi, a chemistry professor at Missouri University of Science and Technology, and her research group have been using SP-ICP-MS to investigate nanoparticles in drinking water and plant uptake. She recently spoke to Spectroscopy about this work.
Optimized ICP-MS Analysis of Elemental Impurities in Semiconductor-Grade Hydrochloric Acid
September 1st 2017A closer look at the use of a cell-based ICP-MS approach that utilizes ion–molecule chemistry to reduce many of the traditional spectral interferences seen in the analysis of high-purity hydrochloric acid used in manufacturing integrated circuits and semiconductor devices
Single-Particle ICP-MS: A Key Analytical Technique for Characterizing Nanoparticles
March 1st 2017The National Nanotechnology Initiative defines engineered nanomaterials (ENM) as those with dimensions of 1–100 nm, where their unique characteristics enable novel applications to be carried out. ENMs often possess different properties than their bulk counterparts of the same composition, making them of great interest for a broad spectrum of industrial, commercial, and health care uses. However, the widespread application of ENMs will inevitably lead to their release into the environment, which raises concerns about their potential adverse effects on the ecosystems and their impact on human health.
Micronutrient Analysis from Soil to Food: Determination by ICP-OES
November 1st 2016The nutritional value of food depends on many components, including vitamins and minerals. While both of these occur naturally, they are also commonly added during processing to increase the nutritional content. Naturally occurring nutrients enter plants (and ultimately animals who consume plants) from the soils in which they grow, so it is equally important to monitor the nutrient content of both soil and final food products. Since the number of elemental nutrients is limited and they are present at relatively high concentrations, ICP-OES is an ideal technique for their measurement in soil and food. This work will focus on the elemental nutrient analysis of soils and two categories of food products: milk and fruit juice, whose nutritional content is particularly important as they are commonly consumed by young children.
Determination of Contaminants in Wine Using an ICP-MS Technique
November 1st 2016Strict and steady food control protects consumers against undesired contaminations and guarantees a high level of quality. This can be achieved by enforcing maximum allowable concentrations of hazardous substances. For simultaneous quantitative determination of the inorganic elements in wine, the ICP-MS technique is the preferred quality control tool. ICP-MS offers high sensitivity (trace detection), a wide dynamic range and a high sample throughput. In this study, commercially available red and white wines were investigated; 14 different elements were quantified simultaneously: arsenic, cadmium, caesium, copper, chromium, vanadium, iron, manganese, nickel, lead, selenium, tin, thallium and zinc. The developed ICP-MS method has a high accuracy, regardless of element concentration.
Absolute Quantification of Proteins and Peptides by ICP-MS
November 1st 2016Despite all of the recent advances in analytical technologies dedicated to biotherapeutics, accurate protein quantification remains a challenge for the biopharmaceutical industry. UV spectrophotometry is commonly used for batch testing, but it requires the knowledge of the extinction coefficient of the protein, whose experimental determination requires the accurate concentration of a reference standard obtained by an absolute quantification method. To address the need for a fast analytical method capable of accurately quantifying a protein without any specific reference substance, an isotope dilution ICP-MS method was developed and validated, based on sulfur determination, allowing very accurate determination of a single protein in solution after microwave digestion.
How to Improve Analytical Figures of Merit of Hard-To-Ionize Elements in ICP-Based Techniques
January 1st 2016Signal suppression caused by matrix effects has long presented challenges to analysts using inductively coupled plasma–atomic emission spectrometry (ICP-AES) and inductively coupled plasma–mass spectrometry (ICP-MS) techniques. In some cases, however, matrix effects enhance the signal, and thus benefit the analysis. Guillermo Grindlay of the University of Alicante, in Spain, has been studying signal enhancement by charge-transfer reactions resulting from the presence of carbon, sulfur, and phosphorus in the sample matrix. His aim is to better understand under what conditions these matrix effects occur and what mechanisms are involved, to assist analysts in managing interferences and improving the analytical figures of merit in their work. He recently spoke to us about his research.
What Modeling Reveals About the Properties of an Inductively Coupled Plasma
January 1st 2016To get better performance from inductively coupled plasma (ICP)-based methods, it is informative to study the properties of the ICP under different conditions. Annemie Bogaerts and Maryam Aghaei at the University of Antwerp, Belgium, are using computational modeling to examine how various properties of the ICP, such as gas flow path lines and velocity, temperature changes, and ionization effects, are affected by numerous factors, such as the gas flow rates of injector and auxiliary gas, applied power, and even the very presence of an MS sampler. They have also applied their models to study particle transport through the ICP. Using their developed model, it is now possible to predict optimum conditions for specific analyses. Bogaerts and Aghaei spoke to us about this work.
Sample Preparation Method for Mercury Analysis in Reagent Chemicals by ICP-OES
November 1st 2015Efficient and accurate measurement of mercury concentration is a challenge. A direct sample preparation method for reliable ICP-OES mercury measurement would be invaluable to chemical manufacturers, testing laboratories, and other industries. Historically, ICP-OES Hg measurements have been plagued by poor Hg detection limits, severe carryover effects, and sample instability. In this study, we present a method of sample preparation for ICP-OES mercury analysis in various reagent chemical compounds. This sample preparation method is straightforward and direct, allowing mercury analysis in a variety of reagent chemicals without digestion.
Questioning the Relationship Between Analyte Ion Mass and ICP-MS Matrix Effects
November 1st 2015Matrix effects-changes in analyte sensitivity induced by a high concentration of matrix elements-can reduce accuracy in inductively coupled plasma–mass spectrometry (ICP-MS). It has long been accepted, since the 1987 publication of a study by Tan and Horlick (1), that matrix effects are more severe for light analyte ions in the presence of heavy matrix ions. However, new studies by Shi Jiao and John Olesik in the Trace Element Research Laboratory (TERL) at The Ohio State University (Columbus, Ohio), carried out using current ICP-MS instruments, show that matrix effects are not strongly dependent on analyte ion mass. These study results have implications for understanding the fundamental causes of matrix effects in ICP-MS, and for the choice of internal standards. Jiao and Olesik spoke to Spectroscopy about this work.
Tackling Unresolved Problems in ICP-MS
October 7th 2015Inductively coupled plasma–mass spectrometry (ICP-MS) is a powerful analytical technique. But like any other analytical techniques, there are challenges involved. We recently asked ICP-MS experts what unresolved problems exist-especially with samples in complex matrices-and how ICP-MS methods or technologies can be developed to attack them.